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Deformations of the Hodge map
and optical geometry
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Abstract.A simple formula is derivedfor the infinitesimal changeof theHodge
dual of a k-form, inducedby a deformationof thescalarproductin theunderlying

vector space.By consideringdeformationsdueto a flow generatedby a vector
field on a differential manifold, oneobtainsan expressionfor the commutatorof
the Hodgedual with theLie derivationwith respectto the vectorfield, actingon
differential forms. This formula is usefulin proving theoremson optical solutions
of Maxwell’s and Yang-Mills equations.Theopticalgeomeziyunderlyingsuchsolu-
tions is definedas a restriction of thebundleof linear framesof a 4-dimensional
manifold to a 9-dimensionalopticalgroup. Thisgeometryprovidesa naturalframe-
work for the study of shearfree, optical and geodesiccongruencesand of tile
associatedfields.

1. INTRODUCTION

In theoreticalphysics one often considersmathematicalmodels of the follow-

ing type. There is givenan n-dimensionalsmoothmanifold M, a Lie group G, a

principalG-bundleP -÷Manda representationof G in a finite-dimensional,realor

complex vector spaceV. Physicalhistories (classicalfields, wave-functions,etc.)

are describedby V-valued k-forms on F, equivariantundertheaction of G. For
example,a connectionon P is describedby ag-valued1-formw whichcorresponds
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to the adjoint representationof G in its Lie algebra g and, moreover, is a left

inverse for the map g - TP defined by the action of G in I’. Of special interest

arehorizontal k-forms: thecurvature2-form

f2=dw+—Iw,w]

is horizontal and, if ~ is a horizontal k-form, then its covariant exteriorderivative

D~ is a horizontal (k + 1)-form. If Al is oriented andhasa (Riemannianor Lo-

rentzian)metric tensorg, then theHodgedual map* can he appliedto horizontal

forms on F: if ~ is a horizontal V-valuedk-form on F. then * ~ is a similar In k )-

-form. Many fundamental equations of physics have the following structure

(U D*~=*j,

where ~ and j are horizontal, V-valued k- and (k — 1)-forms, respectively.For

example, if G = U( I ), ~ is the curvature 2-form and 1 is the IR-valued I -form

of electric current, then (1) is simply the Maxwell equation. For a non-Abehian

group G and ~ = ~ equation (1) coincides with that introduced by Yang and

Mills. If P is the bundleof linear frames of Al endowedwith a linear connection

and 0 = (0 U denotesthe soldering form, then the choice ~ = 0~A 0 ), p. 1’

= 1 ii, leads to the Cartan equation of a relativistic theory of gravitation

with spin/andtorsion DO [1 — 3].

In view of the occurrence of the Hodgemap in the fundamentalequation

(1) it is interesting to consider the dependenceof * on g and, in particular,

its behaviourunderdeformationsof the metric. This results in a formula for the

commutatorof * with Lie derivation relative to a vector field. The formula has

already been used to prove a theorem on the existenceof optical (isotropic)

Yang-Mills configurationsassociatedwith shear-freecongruencesof null geodesics

[4]. The paperis concludedwith a section on the eopticalgeometry>>underlying

the local structureof suchcongruences[5 - 7].

2. THE HODGE MAP AND ITS DEFORMATIONS

Let V be an n-dimensional real vector space with a preferred orientation.

The group GL(n. IR) acts transitively in the manifold F( F) of all linear frames

in V. similarly, GL~(n.IR) acts transitively in the open suhmanifoldF~(F) C

C F(V) of frames with the preferredorientation.A scalarproduct in V is defined

as a symmetric bilinear map g : V x V lR which is nonsingular: if g(u. tI = 0

for all ii C V, then v = 0. Let S( 1~)C V~~ ~7* be theset(in fact,manifold) of

all scalarproducts in V. If e = (eu), p = I n. is a frame andg ES) VI then
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the formula

g(e) =g(e~,e,)

definesthe functionsg~,: S(V)—* IR and

g~Jea) = g~
0(e)a’~a~,

wherea = (a~)E GL(n, IR). If’y(e) = det (g~(e)),then

~y(ea)= y(e) (deta)
2

andthe sign of’y(e) is an invariant.

The Grassmann algebra of formsover V in denotedby

AV*= ~
k=O

where A0 V* = IR and Ai V* = V* is the dual of V. For any frame (eu) EF(V)
its dual (eU EF(V*) is determinedby

~e e~)=b”,

whereangularbracketsdenotetheevaluationmap V x V’1’ —* IR.

Let (eM) EF~(V)and (eM) be its dual.The volume form

vol (g) = y(e)11/2 e’ A e2 A.. . A e~

dependson g E S(V), but not on the frame, provided it is of preferredorientation.

A convenientabuseof notation consistsin usingthesameletter

(2) g:V~+V*

for the linearmapdefinedby

(u, g(v)) = g(u. v)

as for thescalarproductg ES( V) itself.

For any k-form ~ its Hodgedual u(g)o is defined as the (n — k)-form given

by its value on thevectorsUk + 1,•, u,~C V as follows:

(3) vol(g) ‘ u(g)cs(u~~ u,
1) =csAg(u~~1)A...Ag(u,). :

When g is fixed once for all, then one usually writes * ~ insteadof u(g)~.The

latter, more elaboratenotation is usedhere in order to study the dependence

of theHodgemap on g. Clearly. u(g) can be extendedto a linearmap

o(g) : AV* —* AV*
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andit is known that

(4) o(g)
2a = (~I )k(~ I) sgn ~)e)a for aC \k V*.

Let t —*g~(tC lR) be a smooth curve in 5(V). (In fact, only the first jet of

t —*g~at t = 0 will he used).If g - denotesthe inverse of (2). then thecompos-

ed map~ g is an automorphismof V*,

dl

(5) Ii = — g~og~l
dt 1=0

is an endomorphismof J7*, and

d 1
(6) — vol (g

1) = — Tr Ii - vol (g0).
dt 2

The derivation of the GrassmannalgebraA V~induced by Ii is denoted1(h).

This is a linearmapsuchthat, if aC V*, then iUi )a = hi (a). and

(7) i(hi) (~A~) = (i(/i)Ø)A ~ + 4Ai(/i)~

for any ~, ~ C A V*. It follows from the definition of the volume form that

(8) i(h) vol (g) = (Tr Ii) vol (g).

Let g1 be now substitutedfor g in (3) and both sidesof the resultingequation

differentiatedwith respectto t at 0. This yields

d
— vol (ge) o(g0)cs(i?~~i..... ii,,) +
dt

d
+ vol (g0) — u(g1)cs(u~+ ~,,, =

= aA i(h) (g0(u~+ ~) A. . . A g0(u0)).

Taking into accountequations(6 - 8) and denoting u(g0) by *. the last formula

canbe written as

(I
(9) — u(g1)cx = — *i(hi)a + — (Trh) * a.

dt (=0 2

Moreover, it follows by differentiation of (4). with g1 substitutedfor g. that

the linear mapdefinedby (9) anticommuteswith *. This is equivalentto

(10) *i(h)a+i(/i)*a=(Trhi)*a
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so that (9) canbe rewrittenas

d
(11) — u(g

1)cs = (i(h) — 1/2 Trh) * a.
dt (=0

To a conformal deformation of g0ES(V),g1 g0 expt, there corresponds

h = id.

Sincei(id) restrictedto A’ V* is k times theidentity andTr (id) = n,

d 1
— a(g0 expt) ct = k — — n * a
dt (=0 2

and one recoversthe well-known result: in an even-dimensionalspace,theHodge

dual of forms of middle degreeis invariant under conformal changesof the

scalarproduct.

3. DEFORMATIONSGENERATED BY FLOWS

Let M be an n-dimensionalorientedparacompactdifferential manifold. The
manifold andall relevant mapsare assumedto be smooth.The bundlesof linear

frames and of scalar productsare denotedby F(M) and S(M), respectively. If
T~Mis the tangentspacetoM atx, then

S(M)= U S(T~M),
xEM

with a suitable topology and differential structure.A sectiong of the bundle
S(M)-+M is a metric tensoron M. If x EM andg is a metric tensoron M, then

g~ES(~M)

is its value at x. Only a little mentaleffort is requiredto avoidconfusionbetween

andg~occurringin the precedingsection.Let

f:M-~M

be a diffeomorphismand

TXf:TXM_*Tf(X)M

denote the derived map. The pull-back of g by f is the metric tensorf*g such

that,if u, v C TIM. then

(12) (f*g)(iL, u) =gf~(T f(u), T~f(v)).
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The bundleof k-forms on Al is

Ak(Al) = U ~k(T*Af)

XEEM ~

with a suitable topology and differential structure: the bundle A(M) of Gras-

smannalgebrasis similarly defined. Its sectionsconstitute the (
7artan algebra of

differential forms. If a is a section of A(M) —*M, then a~C A(T~*M)is its value

at x. If a and ~ are two such sections,then aA ~ is anothersectiondefined by

(aA~)~~

The Hodgemap of differential forms is alsodefined in this K<pointwisesman-

ner: if a is a sectionof Ak(M) on a manifold with a metric tensorg, then o(g)a

is a sectionof A”~(M) -+M givenby

(o(g)a)~= o(g~)a~.

The pull-back f*a of a differential form ais definedsimilarly as in (12) and

the <<naturalitys’ of theHodgemap is expressedby

(13) f*(a(g)a) = o(f*g)f*a

for any diffeomorphismf.
Let (f~)~~denote the flow generatedby a vector field X on Al. The map

t ~ (f~g)~is a curve in S(7M), i.e. a deformation of g
5 in the sense of §2.

The Lie derivativeof g with respectto X,

~g

definesan endomorphismh of the bundleT*M —~Msuchthat

h =(~ g) og~,x X x x

where the notation is consistentwith that in (5). If is substitutedforj’m (13)

and the resulting equation differentiated with respect to t at 0, one obtains

d
— o(f~*g)a + 0(g) ~a
dt 1=0

so that:

d

— o(f*g)adt t=0
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Using (11) and revertingto the traditional notation,u(g)a = * a, one canwrite

(14) [.2~~,*]a= i(h)——Trh *a
2

where 1(h) is now the derivation of the Cartanalgebradefined <<point-wise>>in

termsof i(h~).

4. OPTICAL GEOMETRY

Considera planeelectromagneticwave describedby a 2-form on an oriented
Lorentz 4-manifold M. Let F and g be, respectively, the valuesof the 2-form

and of the metric tensor at x CM. They are tensorsover V = T~M and there
exists an optical (<<null>>, <<isotropic>>) vector k E V and a 1-form a such that

F = x A a, where x = g(k) and (k, a) = 0.

The dual ofF is

*F= xA~3

where /3 C V* is orthogonal to both a and x, and of length equal to that of a.
The 1-form x is definedup to a non-zeromultiplier; the h-forms a and /3 are

defined modulo x andup to a common factor. The directionK of k, as well as

L = ker x, are well definedby F.

On the basis of such heuristic considerations,I define an optical structure
in a 4-dimensionalrealvectorspaceV to consistof

(A) a pair of vector subspaces(<<a flag>>), K and L, of dimension 1 and 3,

respectively,andsuchthat

KCLCV;

(B) an orientationand a conformal scalarproductin the 2-dimensionalvector

spaceL/K.

Clearly, condition (B) is equivalentto giving (B’) a complexstructurein L/K.

i.e. a linearmap

J eL/K —* L/K suchthat J2 = —-Id.

If (V, K, L. J) and (F’. K’, L’, J’) are two optical structures,then f: V-+ V

is an optical isomorphismif it is an isomorphism of vector spacessuch that

f(K)=K’, f(L)=L’ and J’of=foj
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where

f: L/K .. L’/K’ is given by f( 1 modK) =f( I) mod K’. I CL.

The standardoptical structureon V0 = IR

4 is given by

K

0 =]xCIR
4 :x1=x2=x4=0}, L

0=]xCIR
4 :x4=0], x=(xU.

and

J
0[(xt. x

2, 0,0)] = [(—x2. xt 0. 0)]

where square bracketsdenotean equivalenceclassmod K

0. The optical group

G0 c GL(4, IR)

is the group of all optical automorphismsof the standardstructure:it is a 9-di-
mensionalLie groupconsistingof all matricesof the form

pcos4 psinØ 0 p -

—psin~ pcos~ 0 q
(15)

a b 0 r

0 0 0 T

where 0 ~ ~ < 2~. p. 0, T ~ 0 and a, b, p, q. r C IR. An optical frame is an optical

isomorphism e of the standardstructure onto (V. K. L. J). If e is optical and

a C G0. then ea is optical and all optical frames can be so obtained from one

of them. Let e(p = 1, 2, 3, 4) be the image by eof the ~flIs unit coordinate

vector in JR
4. then e

3 C K, the vectorse1, e, and e3 span L andJ(e1mod K) =

= e7 mod K. Oneusuallyidentifies e with (CM).

Let Op F(V) C F( F) be the set of all optical framesof ( V. K. L. J) andconsi-
der the map

g :OpF(V)-*S(V)

definedby

g(e) = e~® e
4 + e4®e — e ® c~— e2~c 2

where(eM) is the frame dualto e = (CM) so that

L = kere4.

If a C G
0 is given by (15), then

g(ea)=p
2g(e)+~ne4+e4n~ forsome ~E V~.

It is now clear that condition (B) in the definition of the optical structure can
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be replacedby the following:

(B”) an orientation in L/K and a subsetE of S(V) such that, if 0 * k EK,

then for eachgEE one has L =kerx, where c =g(k); if g and g’CE then
thereis a numberp ~�z0 anda I-form ~ suchthat

(16) g’=p
2g+~®x+x®~.

Let F be a 2-form in an orientedvector space V with optical structureand
let x = g(k) be as in (B”). The conditions

(17) kJF=0 and xAF=0

dependonly on the optical structureof V and not on the particularchoiceof
k and g. A 2-form F satisfying (17) is said to be optical. It is known (see,for

example,[7] and the referenceslisted there) that, if F is optical andgEE, then
the Hodgedual a(g)Fisalso optical.Moreover,thereholds

PROPOSITION1. 1fF is opticalandg, g’ E E, then

- a(g’)F=u(g)F

i.e. the Hodgedual of optical 2-formsis invariant under the deformationsofthe
scalar productgivenby (16).

Let M be an oriented,4-dimensionaldifferential manifold. An opticalgeome-

try on M is definedin severalequivalentways:
(a) as a smoothdistribution of optical structuresin the tangentspacesto M;
(b) as a G

0-structureonM;
(c) as a I-dimensionaldistribution on M (vectorsubbundle))rC TM together

with a class ~of metric tensorson M, of Lorentzsignature,andsuchthat:

ifk~C ~ ~ xEM;

if g and g’ E i~, then g~and g~are related to each otheras in (16), where
x=g~(k~).

Let g be a Lorentz metric tensorand k a vector field on M which is optical

with respect to g and nowhere zero on M. The pair (g, k) definesan optical

geometryon M. Another such pair (g’, k’) definesthe same optical geometry
if and only if, for any x CM, the vectorsk~and k~are paralleland the scalar

productsg~andg~arerelatedto eachotheras in (16).

The generaltheory of G-structures[8] provides us with readydefinitions of

optical isomorphisms,automorphismsand with the notion of integrabilityof a

G0-structure.
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The following propositionsfollows froni 7

PROPOSITION 2 . The G
0—structureon Al defined hi’ the pair ( g. ii) is integrahie

if and onIs’ if the distribution .~“ = ker g(k) C TM is integrableand the opine!

congruence generated hi’ k consists of shear—free’geoclesics

PROPOSITION3 . The flow generatedhi’ a vector field k on Al consistsof al/lu-

inorphisnis of the optical geometrs’ definedby (g. k) if’ and onls’ if’ the lines o’

theflow foriti a congruenceofshear-free,opticalgeodesics.

With any optical geometry on Al there is associateda complex line bundie

~/ .)~“-=Al such that the fibre (~/A~)~= .~/ d~’~has complex structure defined

byJ~.

The Lie algebraof G0 is of infinite type and, therefore,thegroupof automor-

phisms of an optical geometry need not be a Lie transformation group [8].

Optical automorphisms may be used to obtain new solutions of Maxwell’s equa-

tions form old ones. A full account of optical geometry and its relation to alge-
braically special solutions of Einstein’s equations will he presented elsewhere

[9. 10].
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